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ABSTRACT I

The stability of a high-speed, axisymmetric boundary layer is investigated using

secondary instability theory and direct numerical simulation. Paramric studies based

on temporal secondary instability theory identify subharmonic secondary instability as

a likely path to transition on a cylinder at Mach 4.5. The theoretical predictions are
validated by direct numerical simulation of temporally-evolving primary and secondary

disturbances in an axisymmetric boundary-layer flow. At small amplitudes of the

secondary disturbance, predicted growth rates agree to several significant digits with
values obtained from the spectrally-accurate solution of the compressible Navier-Stokes

equations. Qualitative agreement persists to large amplitudes of the secondary distur-

bance. Moderate transverse curvature is shown to significantly affect the growth rate

of axisymmetric "second mode" disturbances, the likely candidates of primary instabil-

ity. The influence of curvature on secondary instability is largely indirect but most

probably significant, through modulation of the primary disturbance amplitude.

Subharmonic secondary instability is shown to be predominantly inviscid in nature,

and to account for spikes in the Reynolds stress components at or near the critical

layer.

" This research was supported in part by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-18605 while the third author was in residence at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research
Center, Hampton, Virginia 23665.



1. OVERVIEW

Renewed interests in the development of high-speed civil transport (HSCT) aircraft and the hyper-

sonic National Aerospace Plane (NASP) have rekindled research in the area of high-speed transition

prediction and control. With increased Mach number and higher flight altitude, the length of the transi-

tional flow region increases, extending over large portions of aircraft surfaces. In general, realistic drag

and surface heating estimates are essential to the design of high-speed aircraft and depend on accurate

prediction of transition locations and extent.

In this paper, we combine secondary instability theory (SIT) with direct numerical simulation

(DNS) to investigate the stability of high-speed boundary-layer flow along a prototypical "fuselage";

i.e., a cylinder. Specifically, we focus on the linear and initial nonlinear stages of forced transition, via

a subharmonic secondary instability route. We find secondary instability theory and direct numerical

simulation to complement one another in several ways. First, in the absence of high-speed experimental

data, DNS provides a means to substantiate theory and to establish the limits of its validity. Second,

within its region of validity, secondary instability theory is preferable to computationally-intensive

numerical simulation to explore the parameter space. Third, when the nonlinear stages of a controlled

instability process are simulated numerically, initial conditions derived from SIT provide a "jump start",

thereby reducing significantly the integration times necessary to attain highly nonlinear states.

In the next section we review some experimental and theoretical results which are relevant to ins-

tability processes on cylinders. After briefly defining the geometry, governing equations, and nondi-

mensionalization in the third section, in Section 4 we address, in general, how transverse curvature

influences instability mechansims. As a preface to the discussion of secondary instability theory in Sec-

tion 6, we discuss relevant results from temporal linear stability theory for compressible flows in Sec-

tion 5. In Section 7, results of direct numerical simulation are presented and arc compared with theory.

Closing observations are offered in the final section.
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2. REVIEW

Whereas instability mechanisms in incompressible boundary layers have been studied extensively,

research interest in the stability of compressible flows has been sporadic. Following the pioneering

work of Lees and Lin [II in 1946, there was a very active period in compressible stability research

which lasted into the early 1960's. After nearly two decades of relative dormancy, interest in this area

was revived in the mid 1980's when national attention was directed toward HSCT and NASP. Theoret-

ical papers remain relatively few and experimental results are still quite rare. Although classical linear

stability theory has been thoroughly validated for incompressible boundary layers (most notably [2]), the

only existing confirmations of supersonic and hypersonic stability theory of which the authors are aware

are those of Laufer and Vrebalovich 13] and Kendall [4]. The former experiment investigates super-

sonic flow over a flat plate; the latter examines supersonic and hypersonic flow over a flat plate and

hypersonic flow over a cone. Although the agreement between linear theory and these experiments is

imperfect, it is encouraging, given the difficulty of making accurate measurements in a high-speed flow

environment. The situation is well summarized by Laufer and Vrebalovich 131 who state: "In general,

the experiments confirm the basic assumptions and predictions of the existing stability theory and also

suggest the desirability of improvement ii the theory in certain phases of the problem". With regard to

direct numerical simulation, there have been only a handful of stability simulations for compressible

flows (e.g. [51), and all of these within the past five years, as reported by Kleiser and Z,aag i 1 lhcir

recent review article [6]. In general, there remains a great need lor carefully conducted experiments on

compressible transition, well-coordinated with theoretical analyses and direct numerical simulations.

Concerning the cylinder, it is known from the experiment of Brown, conducted in 1957 and only

recently published [7], that natural transition on a cylinder in a subsonic, axial flow occurs via the now

classical secondary instability route as described by Herbert and coworkers 8,91. Brown's experiment

shows explosive secondary instability emerging from axisymmetric, finite-amplitude Tollmien-

Schlichting (TS) instability waves. The wavelengths in the streamwise and azimuthal directions are

roughly equal and the secondary instability is of subharmonic (H) type as evidenced by a staggered

arrangement of A-vortices. More recently, Kegelman and Mueller 1101 havc observed both fundamental
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(K) type and subharmonic (H) type secondary instabilities in forced transition experiments on an ogive-

cylinder in a low-speed Ilow. At low levels of forcing and in natural transition, the staggered vortex

arrangement is favored, whereas at high forcing amplitudes the tendency is toward the aligned (K)

arrangement. Qualitatively, this is in keeping with observations of transition in flat-plate boundary

layers as reported in [6].

With regard to (spatial) stability theory for incompressible flo,.'s along cylinders, Kao and Chow

111 show curvature to have a stabilizing trend on TS instability waves, characterized by a shift of the

neutral curve toward higher Reynolds numbers in the frequency-Reynolds number stability plane.

Experiments of transition in supersonic flows along cylinders are quite rare. Among these few

are the ballistic range experiments of Seiff and Short [121 and Whitfield and lannuzzi [13]. In the

former experiment, remarkable shadowgraph photographs capture laminar-turbulent transition, and, in

one test case, a turbulent burst. Curiously, in the latter experiment, transition data on cones are com-

pared to data for a hollow cylinder, which the authors claim to be "equivalent to a flat plate". Our

findings do not support this equivalence. There have been, however, several transition experiments on

cones [4,13-181, which are particularly enlightening. Despite simplifying assumptions which neglect

some effects of transverse curvature, Mack 119i obtains qualitative agreement between linear theory and

an experiment by Stetson and coworkers [14] which investigates Mach 8 flow past a sharp, 7-degree

half-angle cone. The frequency of the most amplified disturbance and the neutral-curve obtained

analytically by Mack match closely the experimentally-observed values. However, observed and

predicted growth rates differ considerably. Another experiment of particular interest is the flow visuali-

zation experiment of Fischer and Weinstein 115] on a shallow cone in a very high-speed flow (frees-

tream Mach number of 20) in helium. Fischer and Weinstein observe transition to originate near the

critical layer and to propagate inward to the body over a relatively long distance. For hypersonic flow

over a cone, Kendall 14) observes in the boundary layer "well-ordered rope-like waves ..., which persist

for relatively long distances and which culminate in transition". These latter two results among others

suggest at least two qualitative differences between low-speed and high-speed transition mechanisms: at

high speeds the transition region is relatively long; and at high-speeds transition originates near the crit-
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ical layer rather than near the wall.

With regard to the theory of stability for high-speed flows along cylinders, Duck 1201 shows

trannsverse curvature to have a stabilizing influence on inviscid, axisymimetric instability modes at (edge)

Mach numbers of 2.8 and 3.8. On the basis of spatial linear stability, Malik and Spall 121] show a

similar tendency for axisymmetric "second-mode" disturbances at Mach 5.0. However, they also find

that "first-mode" instability waves can be destabilized by increasing curvature. These results are corro-

borated using temporal linear stability theory by Macaraeg and Daudpota 1221 anid by Pruett and Streett

[23].

Finally, Ng and Erlebacher [24] examine secondary instability mechanisms in compressible flat-

plate boundary layers for a variety of edge Mach numbers up to 4.5 and find subharmonic secondary

instability to be a likely path to transition in high-speed flow. Unlike the explosive nature of secondary

instability in incompressible flow, secondary instabilities in hypersonic flows typically grow more gra-

dually, with amplification rates only somewhat larger than that of the most unstable primary distur-

bance.

These experimental and theoretical findings provide a tentative basis with regard to the investiga-

tion of high-speed instability prcesses on cylinders to follow. First, compressible linear stability theory

is applicable, at least qualitatively. Second, transverse curvature may have a non-negligible influence

on stability. And third, instabilities at high speeds may differ fundamentally from those at low speeds.

3. GEOMETRY, GOVERNING EQUATIONS, AND NONDIMENSIONALIZATION

Coordinate System and G(.terning Equations

Consider the compressible. axial flow along a cylinder of radius R , as shown in Fig. 1. If

(u ,v' ,w') denote velocity components in the cylindrical coordinate system (x* ,0, r* ), and p* and T

denote the fluid density and temperature, respectively, then the flow is governed by the compressible

Navier-Stokes equations in cylindrical coordinates, as given in Appendix E of Thompson 125].

Throughout this discussion, dimensional quantities are denoted by superscript *. Our interest is in the
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stability of the boundary layer downstream of the bow shock. Accordingly, we assume the post-shock

boundary-layer edge conditions to be constant. And, for convenience, we define the wall-normal coor-

dinate z* = r* - R*.

Nondimensionalization

To reduce the parameter space and to gain physical insight, it is desirable to render the governing

equations dimensionless. For the problem at hand, it is most convenient to scale flow quantities by

their respective edge values, denoted by subscript "e", and to scale lengths by a reference length L* to

be defined shortly. The following parameters then appear in the dimensionless governing equations:

Me, the edge Mach number; P-, the Prandtl number; ReL., the Reynolds number based on L; and y,

the ratio of specific heats. Specifically, these are defined as follows:

M e= u ; Pr = - , Re L p -" = (= 1)

In eqs. (1), C; and C" are respectively the specific heats at constant pressure and volume, and a: is the

speed of sound. The ratio of specific heats and the Prandtl number are assumed here to be constant

with values of 1.4 and 0.7, respectively. The viscosity -t and the thermal conductivity K* arc each

assumed to vary with temperature according to Sutherland's law; namely,

I' _ K* 'J 3'2(1+C 1) .1'* F"

P _ , T- ; C -(2)
e K,'; T +C- f"e 7e

where dimensional temperatures are expressed in degrees Rankine and 7**=198.6°R.

There are several possible choices of length scale L. For consistency with the work of others,

we use

L = (3)
w Ue

where v:=p1 Ci is the kinematic viscosity. An alternate length scale is the boundary-layer



-6-

displacement thickness defined by

I dz (4a)
0 Pe Ue

=* (+1-P .dz* (4b)
Pe Ue

Equation (4a) is the standard definition for planar boundary layers, whereas (4b) applies to thick

axisyminetric boundary layers [261. Note that (4b) involves the solution of a quadratic equation and

that, for very large radius R*, (4b) degenerates to (4a). At Mvdch 4.5 and 68/R =0.1, for example,

equations (4a) and (4b) diffei in 5" by about 0.5%.

4. EFFECTS OF TRANSVERSE CURVATURE

Whereas the boundary layer along a flat plate is self-similar in the absence of a streamwise pres-

sure gradient, that along a cylinder is non-similar. It can be argued that self-similarity is possible only

for geometries in which there is no inherent length scale, as is the case for semi-infinite flat plates and

wedges. In contrast, the cylinder has a characteristic radius R*. As the boundary-layer displacement

thickness 68 grows in the streamwise direction while the radius remains fixed, their ratio

c - R. (5)

by which we quantify the curvature C, increases in the streamwise direction, destroying self-similarity.

Transverse curvature C affects boundary-layer stability in two ways: "directly", through the cur-

vature terms which appear in the linearized disturbance equations when expressed in the natural cylindr-

ical coordinate system; and "indirectly", through streamwise evolution of the non-similar mean flow.

Figure 2, obtained from the spectrally-accurate boundary-layer code of Pruett and Streett 1231, shows

the streamwise evolution of the mean streamwise velocity and the mean temperature in the boundary

1!yer on a cylinder in a high-speed flow. The edge Mach number is 4.5 and the edge temperature is
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110°R (wind tunnel conditions). Each curve of the family corresponds to a unique curvature C, or

equivalently, to a unique streamwise station x'. Thus, it is useful to think of curvature as a function of

the streamwise coordinate; i.e., C=C(x'). From eqs. (3) and (5) we obtain

X(c = I F * 6

where

Re . - p: . (7)

From eq. (6) it is clear that C(x*) depends on three dimensionless quantities: the Reyno!ds number

based on radius; the dimensionless streamwisc coordinate, also based on radius (i.e., x*,R*); and tie

ratio of length scales 6*IL*. Of these three quantifies, the first two are free parameters, whereas, as it

will become clear, the latter is not. Typically, for aerodynamic applications, C<<I. However, small C

does not imply immediately that curvature effects are negligible, as will be shown.

Tahle I helow compares the flight environments and geometric characteristics of a variety of

high-speed flight vehicles. In the table, W4_ is the cruise (freestream) Mach number, hI is the cruise

altitude in ftxlO3 , Rm,. is the maximum radius of the fuselage in feet, ReI is the freestream unit Rey-

nolds number at cruise conditions in units of ft'xl106, and A is the fuselage aspect ratio based on the

maximum radius; i.e., A =lC/Rm, where 1" is the length of the fuselage.

Flight Environments

Vehicle M . h Re1  RA A

F-15 1.55 37 3.54 -

Boeing HSCT 1271 1.7 44 3.01 -6.7 -45.
MD HSCT 128] 3.2 65-70 1.50-2.03 -8.4 -37.

NASA HSCT {29] 2.62 60-68 1.42-2.17 5.765 54.6
Reentry Cone [181 20.1-18.2 140-40 .31-40. 1.14 11.4

NASP >10 >100 .2-.5 -10. >20

Table I. Flight environments of various high-speed vehicles
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In general the trend for all three quantities hiL'h affect curvatuire is Ioward grealer influence with

increased Mach number. First, as the table showks, unit Reynolds numbers tend to decrease with tie

higher operational altitudes of faster vehicles. Consequently, Re A. Lends to decrease m ith increasing

Mach number. Second, high-speed \chicles tend to be slender, and large aspect ratio implies that die

ratio x R' can attain large values. Third, and perhaps most signili,:ant, the relative boundary-layer

di.,,placement thickness 6'i L grows as A.1,2, as shown in Fig. I for flow\ over a flat plate. (Figure 3

further shows the significant effect of' I on displacement thickness b) comparing results baed on ty pi-

cal wind tunnel and flight edge temperatures.) For flow along a cylinder, the ratio 6"11" is also a slow

function of the curvature itself as how i in Fig. 4. Thus eq. (6) is a weakly nonlinear equation for C,

given M,., ReA,, and x ,R*. For a high-speed Iliglit vehicle such as the proposed NASP, where A.->>,

ReA. O (106), and A I, then C-0(1011 at aft fuselage stations. In the next section. primary instabil-

ity growth rates % ill be shown to be sensitive to curvature of this order.

5. PRIMARY INSTABILFIY THEORY

In this section, we consider the stability of an iilinie.simadl) small primary disturbance superim-

posed on a steady', l uinar, compressible nean flow. The mean velocity and temperature profiles are

obtained from the numerical solution of the 2D or axis mmetric compressible boundary-layer equations

by the spectrally-accurate method of 1231.

Although the mean flow is ii general a function of' both the strearnwise and wall-normal ctordi-

nates, we invoke the classical parallel flow assumption whereby the streagmwise variation of the mean

flow is considered negligible relative to the transverse variation, a reasonable approximation for

sufficiently large Reynolds numbers and sufficiendy short disturbance wavelengths. As a consequence,

the primary disturbance can be written in the modal form

71 Qx ,O,z ) 1 4(z )e' ( 'OR 0-w C (8)

where
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and similarly for die vctlor i . In eq. (8) u - a' ad j if' a.re sticrnwise anid a/iniuthal

,Aavenumbers, respectively, 1 - 1 .L a, is ,limensionlICSS Lilie, WI C is dimnension less circular Ilie-

quecy ;I comlplex function wichi detines the Structure ol the disturbance in (lhe % all-nonial direc-

tion, and "cc.'' denotes the comiplex conjugate of the preceding terms. The subscript "I" refers to p-

mary" instability, in contrast to "secondary' instability, denoted by subscript "'" in the next section. For

clarit'o, Mi en no confusion is likel) ito result, unsuhscripted wavenumbers arid Ireqtiericy ret . r to [the pri-

mary instability mch-anism. To preserve thc azimuth.1 periodicity of flo along a cylinder, the product

P1? must be anl integer.

To theories are conmmlonly used to study instability mechanisms. Spatial theory assumnes (o) to

be real, Ahile rx and !i are complex. [he real part of ci is the strearnw&ise wave numnber: the negative of

the irnaginary part is the spatial grom h rate. In contrast, in temporal theory, (x and f0 arc taken as real

\A hile to) is complex. The real and imaginary parts of- (o determine, respecL1%IV el'[the temnporal lrequcvI~

and g~rowth rate of' the wave. In temporal theory'. eq. (8j defines a wave vidi a real total wav'enuiber

to v-h~'wih propagates wAith comiplex phase velocity -w'a at the angle A -t'tn'(1'rX) to the

strearn%%ise am s. leinporal and spatial theories give eqivalent results onl\ for neuitrall\ -stable w aves.

An approximate relation.ship bec ee temporal and spatlial theories is given bN the Gaster transformiat ion

I If(]. whrich is increasingly valid as growthl rates tend toward /ero. In the present analysis, we consider

only temnporally'-growinig instabilities.

The lorniulation ol' the e igenvalue problem I-or the anialysis of temporally-evolving inistability

waves in corrinr, sible flows is well documented in Mack (311 arid its numerical soltition kia spectral

collocation methods is described thoroughly in 'Macaraeg et al 1321.' All results presented in til, section

were obtained using temporal linear stability codes \%hich are variants ol that described in 1321, to

which the reader is referred f-or further detail.

A comprehensive review of the linear stability of compressible bounndary layers canl be- found inl

the works o1 Mack 13 11 and M~alik 13311. [or completeness, somne relevant results are restated here. In

brief, there are at least two fundamnental wvays in which instability mechanisms in incomnpressible and(
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coniprcssible boundary layers dilffer. First, unstable miodes in comnpressible \ all-hounded flow may

exhi bit either viscous or inivicid character. Second, for high-speed cornpressible flowk, inultiple nst'abi I-

ity modes niay coexist.

Neutrally -Stable Mlode~s

Unlike the incompressible B~lasius boundary laver, whose velocity profile k. noninflectional, the

cinpressillaJt-plalte boundary layer possesses a 'generaize i/ ndtlc'tonl point' deftined by

Wo - )= W

v. here subscript "0" denotes timec-averaged (mean) quantities. As first observed by Lees and [-in 11].

thle presence ol a generalized inflection point is necessary, and, " ith additional mlild restrictions.

sulff icnt to guarantee the existence of' an inviscid neutral mode. A f'urther generalization of' condition

, 1) to compressible flow alone a cylinder can be found in Duck's recnt w~ork [2(1. In addition, there

exist nlonlmnflec hional inviscid neutral modes. Inflectional neutral modes travel with a phase x'eloci[N

equal to the velocity of' the mean flow at the generalized inflection point. whereas noninflectional nieu-

tral miodes travel with phase v\''UCit\1 equal to the edge v elocity 11, 1341. The practical imnplication for

finite ReL. Of the existence of' both noninfllectiorial and inflectional inviscid neu1.tral niodes is that, in

wall-bounded supersonic flow. unstable miodes may exhibit either viscous, inviscid, or mixed character.

In contrast, 'Follmieni-Schlichting (TS) instability modes in the incompressible flat-plate boundary layer

are purely viscous in origin. Hlere an instability mode is considered to be inviscid in origin if' its

growth rate increases monotonically as Re -increases, whereas it is considered viscous if' thle instability

vanvihs as ReL.-

The "First-Nlode" Instability

In some sense, the so-called "first-mode" instability is thie analog in comp~ressible flow to the TS

instability in incompressible flow. For edge Mach numbers below about 1 .6, thle inflection point lies



close to the wall and the first-mode instability is of essentially viscous nature. As Mach number

increases the viscous instability mechanism weakens and the first mode instability acquires invis' *d

character, as the generalized inflection point migrates further from the wall. Above about M,=2.2 invis-

cid amplification rates increase dramatically with increasing M,. For edge Mach numbers above about

3.8, the first-mode instability can be considered purely inviscid, in the sense that viscosity has only a

stabilizing infl:,ence over the entire range of o. Finally, unlike TS instabilities in incompressible flow,

first-mode instabilities in supersonic flow are most unstable when oblique (P3SO) 131J.

The "Second-Mode' instability

For high supersonic and hypersonic Mach numbers, there exist high-frequency modes of instabil-

ity in addition io the "first" instability mode. The first of the so-called "higher" modes is termed the

"second" mode. In the flat plate boundary layer, it first appears at about Me =2.2 and becomes more

unstable with increasing Mach number until about Me=4 .5, where it is maximally unstable. The second

mode dominates the first mode somewhere in an interval of about M,= 3 to Me 4 , depending upon edge

temperature and other conditions. It remains the most "dangerous" (unstable) mode for high hypersonic

flow. Unlike the first mode, the second mode is most unstable when it propagates in the direction of

the mean flow 1!l.

For the flat-plate boundary layer at M,=4.5, the regions of instability for 2D (P=O) first and

second modes are distinct, as shown in Fig. 5, adapted from Mack 1311. The first and second-mode

"neutral-curves" correspond to parameter pairs (a,ReL.) for which disturbances of the form (8) are neu-

trally stable. Parameter values corresponding to points within (without) the neutral-curves identify

exponentially growing (decaying) disturbances. The lower and upper sections of each neutral curve are

commonly referred to as "branch 1" and "branch 2", respectively. The points on the upper and lower

branches corresponding to the inviscid limit (ReL.--o0) identify respectively the "inflectional" and

"noninflectional" inviscid neutral modes described in a previous subsection 1341.



- 12 -

Eigenfunctions

Figures 6 compare and contrast the eigenfunctions of highly-amplified first and second-mode dis-

turbances in high-speed flow along a cylinder. The parameters of the flow are

Me =4.5 ; ReL. = 989.4 (Re 6. = 10000.) ; T = I=00R (11)

Pr =0.7 ; y= 1.4 C =0.1

The first-mode disturbance has X=58' and wavenumbers (a,P)=(0.0495,0.0792). The second-mode dis-

turbance is axisymmetric with wavenumbers (ct43)=(0.2276,0.0). It is interesting to note that the tem-

perature and density components of the eigenfunctions strongly dominate all other components, a distin-

guishing characteristic of instability waves in high-speed boundary layers. For the second mode at

M,=4.5, the maximum unplitude of the temperature fluctuation is more than 15 times that of the

streamwise velocity fluctuation. The amplitude peaks of the temperature fluctuations occur very near

their respective critical layers (where phase velocity equals mean streamwise velocity), ,s denoted by

the vertical dashed lines in Figs. 6. This suggests that the critical layer plays a special role in high-

speed transition. It is also interesting to note that the vertical component of the perturbation velocity is

insignificant in the first-mode case, whereas it has magnitude roughly equal to the streamwise perturba-

tion velocity in the second-mode case. The eigenfunctions for the moderate curvature (C=0.1) case

shown in Figs. 6 differ only slightly from their respective flat-plate (C=0.0) counterparts.

Effects of Transverse Curvature

We now address how transverse curvature affects stability, relative to the stability characteristics

of flow over a flat plate. In Fig. 7, we vary a to extract a vertical "slice" through Fig. 5 at a fixed

Reynolds number ReL.=955.7, denoted in Fig. 5 by the vertical dashed line. The solid and dashed lines

of Fig. 7 contrast the results for flat-plate and cylindrical geometry (C=0.1), respectively. In both

cases, it is clear that, at Mach 4.5, second-mode disturbances are the most "dangerous", with growth

rates five times their 2D (axisymmetric) first-mode counterparts and roughly twice that of the most
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unstable oblique (helical) first modes. There is a twofold effect of transverse curvature on axisym-

metric first and second modes: a stabilizing trend characterized by a suppression of the first and

second-mode peaks; and a shift of the most unstable wavenumbers toward shorter wavelengths. In con-

trast, the oblique first mode at these conditions is destabilized by increasing curvature. These trends

have been observed and previously reported by Malik and Spall [211, who use spatial stability theory.

In Figs. 8, we examine the sensitivities of the growth rates of two second-mode disturbances of

fixed wavenumber to variations in the curvature C. In principal, this is analogous to forcing the boun-

dary layer at a fixed frequency and observing the change in growth rate at a fixed station as the radius

of the cylinder diminishes. As in Fig. 7, ReL.= 9 55.7 and M,=4.5. For cx=0.20, near the lower branch of

Fig. 7 where the rate of change of the growth rate with respect to wavenumber is large, the variation in

C has significant effect on the growth rate (Fig. 8a). In contrast, the effect of curvature is only

moderate for (x=0.22, near the maximally unstable wavenumber (Fig. 8b). Figures 8 also show the rela-

tive contributions of the "direct" and "indirect" effects of curvature, as defined in Section 4, to the

"combined" effect. To obtain the "direct" influence curve, we use a flat-plate mean flow and introduce

curvature only in the linearized disturbance equations. In contrast, the "indirect" influence curve results

if we account for curvature in the mean flow but not in the disturbance equations. Qualitatively, the

indirect and direct effects on the second mode appear to be additive.

We close this section with a brief discussion of how temporal linear stability theory is adapted to

approximately model spatially-evolving disturbances in a growing boundary layer. In temporal linear

theory, a disturbance of fixed dimensional wavelength (wavenumber) is the approximate analog of a

fixed-frequency disturbance in spatial theory. In Fig. 5, each ray emanating from the origin corresponds

to a unique dimensional wavenumber, three of which are identified as ot/ < a, < ch. Points along each

ray correspond to unique values of the length scale L, or equivalently by eq. (3), to a unique stream-

wise station x'. The low-wavenumber (low-frequency) disturbance, denoted by cx, can trigger only a

first-mode instability, whereas the high-wavenumber disturbance, denoted by c;, can give rise only to a

second-mode instability. However, the disturbance of moderate wavenumber 4t can trigger either first

or second-mode instabilities, depending upon L'.
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In a growing boundary layer, the increase in L* associated with increasing x" leads naturally to

the growth, stabilization, and decay of disturbances of certain wavenumbers o'. For example, in Fig. 5,

point E on the lower branch (branch 1) identifies the value of x beyond which a small-amplitude dis-

turbance of wavenumber oth becomes unstable and begins to grow exponentially. At the value of x °

corresponding to point F on the upper branch (branch 2), the disturbance again passes through neutral

stability. Further downstream the disturbance is stable and its anplitude will decay. If nonlinear

cffects are insignificant, the wave attains its maximum (presumably finite) amplitude at point F, and the

ratio of amplitudes at points F and E is given by

'F

A F
A e (12)

where wi, (x) is the growth rate as a function of position x along the ray. Nonlinear saturation mechan-

isms may dramatically alter the scenario above if wave amplitude becomes large; however, because of

the relatively low growth rates of instabilities in high-speed boundary-layer flow, linear theory is prob-

ably adequate to describe the primary instability mechanism unless the flow is forced at very high

amplitudes.

Figs. 5, 7, and 8, and eq. (12), taken together, imply that moderate transverse curvature may

significantly alter the long term temporal or spatial evolution of primary instability waves, particularly

forced instability waves. In the next section we show the onset of secondary instability to be quite sen-

sitive to the amplitude of the primary disturbance. Thus, curvature may exert an indirect yet significant

influence on transition.

6. SECONDARY INSTABILITY THEORY (SIT)

The secondary instability theory on which the results of this section are based is a generalization

to compressible flow of the work of Herbert 191. Details can be found in the recent work of Ng and

Erlcbachcr 1241, which is summarized below.
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We consider the stability with respect to small perturbations of an axisymmetric base flow

comprised of a steady, parallel mean flow onto which a finite-amplitude, "neutrally-stable" primary dis-

turbance is superimposed. Specifically, following the notation of the previous section, the base flow can

be written

= +(z) + Ecic(z)e + cc. (13)

where subscripts "0" and "b" refer to "mean" and "base" flows respectively, and "El" is the amplitude of

the primary instability wave (normalized so that the maximum amplitude of the temperature fluctuation

is unity). Here we consider only axisymmetric primary waves, although in the more general theory

[24], the primary wave can be oblique (helical). Again we restrict consideration to the temporal model

of stability in which the wavenumber ct is real. In a frame of reference x' = x - cit which moves with

the phase velocity c 1=Re(0oj/l) of the primary wave, the base flow is independent of time and periodic

in the streamwise spatial dimension. Consequently, the stability analysis is amenable to Floquet theory

[91, which applies to differential equations with periodic coefficients. With guidance from Floquet

theory, a general ansatz for a secondary disturbance ensemble of N wave components is as follows:

• . ih--x N/2-1,

,2(t,x,0,z) = e' W2e 2 eiPRO Y -2,j(z)eijUX' + c.c. (N even) (14a)
j -N12

W21= e 2e2 eiPRe N 2 (z)eija%' + c.c. (N odd) (14b)
j=-(N-1)12

where eqs. (14a) and (14b) are valid for an even and odd number of wave components respectively. In

eqs. (14), subscript "2" denotes "secondary" disturbance, and h is the "detuning parameter". Hen-

ceforth, 03 without subscripts refers to the azimuthal wavenumber of the secondary disturbance. For

h=l, the secondary disturbance is of subharmonic (1-1) type, whereas for h=0 it is of fundamental (K)

type. For 0 < h < 1, eqs. (14) model so-called "detuned" secondary instability modes. In practice, the

parameters of the neutrally-stable primary wave correspond to some point along the upper branch of the

neutral-stability curve, in keeping with the discussion of Fig. 5 in the previous section.
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Let us now choose wavenumbers (x and 0 and suppose 4, + E2472, where ifb and i2 are

defincd in eqs. (13) and (14), respectively, and where E2 is the amplitude of the secondary disturbance,

presumed small. Substitution of q into the compressible Navier-Stokes equations, neglect of nonlinear

terms in 1 and 2:, and discretization in the z direction, results in a complex generalized eigenvalue

problem tor the eigenvalue (o, and the discrete eigenvector -2 = 1-2 o, -2.-' . 2, .. " , namely

(A 3D
2 + A 2D

1 + A 1)q02 = 2 0 0 2  (15)

In eq. (15), DP denotes a p-fold discrete spatial differentiation operator, and the A's are complex

matrices of dimension 5MN x 5MN, where M is the number of discrete grid points in z. The nearly

one thousand lines of FORTRAN code required to evaluate the coefficients of the A, matrices are gen-

erated with the help of MACSYMA, a symbolic manipulation language, without which the analysis of

compressible secondary instability would be a formidable task. Even with a highly-accurate numerical

method, such as the spectral collocation method in current use, in which typically M=73, the memory

requirement for an eigenvalue calculation of N>6 becomes prohibitively large. Fortunately, only a very

few components of (14) are of major importance, as suggested in Table II.

Eigenvalue vs. Number of Components
N Im((o2) -Re(o 2)
2 0.002416 <10 - 1
3 0.002411 <10 - 1
4 0.002406 < 10-7

Table II. Variation of the Eigenvalue of a Subharmonic Secondary Instability
with Number of Components N.

The results presented in Table 11 are for subharmonic (h=l) secondary instability. The flow parameters

are the same as in eqs. (11). The primary disturbance is an axisymmetric second mode of wavenumber

ct=0.2523, amplitude El=.085, and frequency (ol = 0.2275 + i0.436x104. The azimuthal wavenumber

of the secondary disturbance is -0.2673. Due to memory limitations and contamination by round-off

error, it is not computationally feasible to include enough components in the eigenvalue problem to
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demonstrate convergence of the ansatz (14) in a rigorous mathematical sense. Rather, we have verified

the eigenvalues by comparison against spectrally-accurate direct numerical simulation. With the inclu-

sion of just two (N=2) wave components in the secondary disturbance, the eigenvalue is correct to two

significant digits. That Re(0 2) is essentially zero in the frame x' implies that the primary and secon-

dary disturbances are phase locked.

Figure 9 displays a rather typical scenario for secondary instabilities at subsonic and low super-

sonic Mach numbers. The parameter values for this test case, in which four components (N=4) have

been retained in the ansatz (14), are

M, = 1.6 ReL. = 6 13 .2 (Re,. = 1641) ; T = 520'R (16)

c=0.0867 ; f3=0.1336 ; C =0.051

The subharmonic secondary instability mechanism is favored at low to moderate amplitudes of the pri-

mary disturbance, whereas the fundamental secondary instability is more unstable at higher primary

amplitudes. This suggests that subharmonic instability is more "dangerous" in natural transition in this

speed range, in keeping with experimental observations for low-speed flow. At higher Mach numbers,

there is some evidence that subharmonic secondary instability is yet more strongly favored. Figure 10

displays the growth rate of the secondary instability as a function of the detuning parameter h for a

fixed, moderate-amplitude (E1=0.085) primary disturbance. The parameter values of the flow are the

same as those in eqs. (1I) except that ReL.= 994.6 . The disturbance parameters are a-0.2506, 3R =21,

and N=2. Of all possible secondary instabilities, the subharmonic type (h=l) is most unstable. More-

over, no fundamental type instability exists for these parameter values. Consequently, we consider hen-

ceforth only secondary instabilities of subharmonic type.

The nature of secondary instability is that it is triggered only after the primary has achieved some

threshold amplitude. This is clearly shown in Fig. I l which presents the growth rate of a subharmonic

secondary disturbance of N=2 vs. primary wave amplitude El. Again, the flow parameters are the same

as given in eqs. (11), except that ReL.= 955.7 . In this case, the disturbance parameters are at=0.2400
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and 3=0.2000. For El < 2.5%, no secondary instability is present. For F- > 2.5%, secondary instabili-

ties exist which, at large El, attain growth rates slightly higher than that of the maximally unstable

second-mode disturbance at the same ReL.. Figure 11 also compares the results for the flat plate with

those of a cylinder of curvature C=0.1. It appears that secondary instabilities per se are little affected

by moderate transverse curvature. This is further substantiated in Fig. 12, which shows only slight

influence of transverse curvature on the growth rate of the secondary instability, for a fixed 8.5% pri-

mary disturbance amplitude. However, since the growth rate of the secondary disturbance is strongly

dependent on primary disturbance amplitude, which is itself sensitive to curvature effects (refer to Fig.

5, eq. (12), and Fig. 11), the indirect influence of curvature on secondary instability may be substantial.

Except for the variation in C and the fixed e, the parameter values for Fig. 12 are the same as those

for Fig. 11.

It is interesting to compare the eigenfunctions of primary (Figs. 6) and secondary disturbances,

the latter shown in Fig. 13. Here, the parameter values are the same as those given for Table II, with

N=2 and cl--0.085. Like the eigenfunction of the primary disturbance, the eigenfunction of the secon-

dary disturbance is dominated by the temperature component which peaks in amplitude near the critical

layer (z*=1.086"). However, unlike the primary mode, the secondary eigenfunction has very little

structure near the wall. Remarkably, the structure of the eigenfunction of the subharmonic secondary

disturbance is qualitatively very similar to that of a helical first-mode disturbance (Fig. 6a).

The amplitude of the secondary disturbance eigenfunction, peaked well away from the wall, its

relative insensitivity to changes in the mean flow (refer to Fig. 12), and its relatively large growth rate,

suggest that the secondary instability mechanism is predominantly inviscid. This suspicion is confirmed

by Fig. 14. For a fixed primary disturbance with ReL.=955.7, (x=0.2400, and c1=0.085, the Reynolds

number of the eigensystem for a secondary disturbance of 3=0.2000 and N=2 is allowed to vary

artificially from about 103 tO 1.5x10 6, while all other parameters remain fixed. The growth rate of the

secondary mode increases monotonically with increasing ReL. and asymptotes at laige ReL. to approxi-

mate values of 0.0053 for C=0.0 and 0.0052 for C=0.1. The figure confirms once again, that for fixed

primary disturbance amplitude, the secondary instability mechanism is minimally influenced by
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moderate transverse curvature.

7. DIRECT NUMERICAL SIMULATION (DNS)

The 3D, compressible Navier-Stokes equations in primitive variables lp,u,v ,w p] (where p is the

pressure) are solved by a highly-accurate spectral collocation method developed to numerically study

instabilities in the flat-plate boundary layer [5]. The algorithm, adapted to the cylindrical (x,O,z)-

coordinate system of Fig. 1, treats either flat-plate or cylindrical geometry, depending on the value of a

switch parameter. A temporal model of stability is assumed, in keeping with the linear analyses of pri-

mary and secondary instabilities presented earlier. As before, the mean flow is regarded as locally

parallel and subject to temporally-evolving, spatially-periodic perturbations. Since the parallel mean

flow does not exactly satisfy the viscous Navier-Stokes equations, small forcing terms are added to the

governing equations sufficient to suppress temporal evolution of the mean flow. The spectral colloca-

tion method employs Fourier basis functions in the periodic streamwise-x and azimuthal-0 directions,

and Chebyshev polynomial basis functions in the aperiodic wall-normal-z direction. Stretching and

clustering mappings in the (finite) wall-normal direction concentrate collocation points in regions of

severe gradients; i.e., at the wall and at the critical layer. These mappings are detailed in [51.

The governing equations and boundary conditions define an initial value problem which is

integrated in time explicitly, by means of a 3rd-order, low-storage, Runge-Kutta scheme [35]. Initial

conditions are formed by superposition of a parallel mean flow, derived from a spectrally-accurate

boundary-layer code 1231, and eigenfunctions of primary and secondary disturbances, generated from

the temporal stability code of 1241, also spectrally accurate. The mean boundary-layer profiles are gen-

erated assuming an adiabatic wall. In the direct simulation, the temperature at the wall is kept fixed at

its mean value, and no-slip conditions are imposed on the velocity components. Either Dirichlet or

Neumann conditions are enforced at the far-field boundary, with little eff,-ct on the solution provided

the boundary is at sufficiently large z. The values of density at the wall and at the far-field boundary

arc obtained by projecting forward in time using the Runge-Kutta integrator. Pressure at the wall is

extracted from the equation of state.
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Test Case

The parameters of the test case are as follows:

Me = 4.5 Re 994.6 T = 110R (17)

Pr =0.7 1,-..4 ; C =0.1

The Mach 4.5 case at a typical wind-tunnel edge temperature was selected for several reasons. As

mentioned previously, the second mode is most unstable at Mach 4.5 so that the most likely type of pri-

mary instability is well-defined. Furthermore, this case has been investigated previously for flow over a

flat plate by Mack 1311, using linear stability theory, and by Erlebacher and Hussaini [51, using direct

numerical simulation. Thus, there is data against which to compare the results for cylindrical flow.

Finally, we assume a moderate degree of curvature (C=0.1), large enough to influence stability, yet

within the range of values encountered in high-speed flight.

Initial Conditions

The wavenumbers, amplitudes, and eigenvalues of the instability waves imposed initially are

given in Table III below.

Initial Conditions
Instability (X P oe

Primary (1,0) 0.2506 0.0 0.2261 + 0.00032i 0.0850
Secondary (1/2,±) 0.1253 ±0.2079 0.2261 + 0.00253i 0.0085
Secondary (3/2+1) 0.3759 ±0.2079 0.2261 + 0.00253i 0.0085

Table III. Disturtance initial conditions

For simplicity, we adopt a modal notation whereby "(i,j)" refers to a wave of wavenumbers (ia,jp).

The primary (1,0) wave is an axisymmetric second mode of nearly neutral stability, whose parameters

correspond to a point near the upper branch of the second-mode neutral curve. The secondary distur-
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bance, obtained in the manner of the previous section, is of subharmonic type with 3R =21 and N-4.

The (12,1) component of the secondary wave ensemble has kE60 ° . For this value of k, the secondary

disturbance is very nearly maximally unstable with respect to 3. The initial amplitude -2 of the secon-

dary wave ensemble is ten times smaller than that of the primary wave, based on the relative peak

amplitudes of the temperature fluctuations of the (1,0) and (1/2,1) waves.

Results

The results shown here are for a simulation of 12x12x65 resolution with equally-spaced points in

the periodic dimensions and with the near-wall collocation points in the wall-normal direction distri-

buted as shown by the symbols in Fig. 16. The bounds of the computational domain are

0 _x < 4 _
a

0 _< 0 < 27E (18)OsR

05 < 15

The fully-explicit time advancement results in a severe constraint on the time step when used in con-

junction with the Chebyshev spectral collocation method. About 8000 time steps per period of oscilla-

tion of the primary are required to maintain numerical stability. The simulation requires about 38

minutes of CPU time on a Cray Y-MP per period of oscillation. Resolution (decay of the spectral

coefficients) was monitored throughout the computation, which was halted at about 38 periods (24 CPU

hours) when resolution began to deteriorate rapidly. Work is in progress to continue the simulation

further into the nonlinear regime using a refined mesh and a high-order compact-differencing scheme in

the wall-normal direction.

Fig. 15 shows the temporal evolution of the "energy" in various harmonics of the primary and

secondary disturbances, based on a Fourier decomposition in the periodic dimensions and an integrated

average in the wall-normal dimension; namely,
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I L~ 1 2 12 1d-2 L"- f p±[ I , j + IIIV2, rdz (19)

where upper case U,, represents the (i j)-th complex Fourier component of the streamwise velocity, etc.

Solid and dashed lines show results of the simulation whereas circles denote the predicted values based

on linear theory for primary and secondary instabilities. The growth rate of the primary (1,0) wave is

in close agreement with theory for more than 30 periods of oscillation. Initially, the (1/2,1) and (1/2,-)

(coincident) components of the secondary disturbance grow at a rate which agrees to several significant

digits with the values predicted by secondary instability theory. These modes begin to depart toward

slightly higher growth rates at around 10-15 periods of oscillation of the primary. Over the length),

integration, the slightly non-neutral primary increases in amplitude by a factor of about 1.5 as shown in

Fig. 16. The squares in Fig. 15 denote adjustments to the theory to incorporate the gradual increase in

amplitude of the primary, and are obtained by integrating the following set of ordinary differential

equations for the primary and secondary amplitudes A I and A 2, respectively:

L41
-11 = Im(w1)A 1  (20)dt

dA 2) A--- h(o.(A 1))A2
dt

In eqs. (20), Im(o)) is assumed constant, but lm(uo2 (A 1)) is interpolated from the data in Fig. I1. This

correction slightl) overprcdicts the upward deflection in the growth of the (1/2,1 ) mode. In contrast, the

(3/2,1) and (coincident) (3/2,-1) components of the secondary disturbance grow consistently at the rate

lm(o1 l + (02), denoted by triangles in Fig. 15. This is precisely the rate one would anticipate based on a

weak quadratic nonlinear interaction between the primary (1,0) wave and secondary (I/2,1) wave.

Qualitative agreement between theory and simulation persists until about period 35, when the

growth rate of the primary disturbance deviates significantly from the value predicted by linear theory.

At this stage, modes generated by nonlinear interactions are attaining significant energies, and transition

appears to be imminent. In particular, the (1,2) mode, which originates from the self-interaction of the

(1/2,1) wave, has an energy content nearly equal to that of the primary instability wave. By the time
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the computation is terminated at period 37.7, the temperature component of the secondary (1/2,1) wave

has grown to more than 15 times its initial amplitude, as shown in Fig. 17.

Reynolds Stresses

Figure 18, obtained from the results of DNS, presents the four significant components of the six

possible Reynolds stress components. These are computed in temporal theory according to

Ti. I JPUU j 'uI rd Odx (2)
ffrd Odx

where primes denote perturbation variables; e.g., u' = u-u). The individual curves in the four plots

represent the wall-normal distribution of Reynolds stress at intervals of 6 periods in time, beginning

with the initial condition and ending at period 36. With the exception of the r,., component, all Rey-

nolds stress components are peaked at the critical layer, denoted by dashed lines. In Fig. 19, we exam-

ine the relative contributions of the primary and secondary disturbances to the t, component. It is

clear that the large growth in Reynolds stress at the critical layer is due almost entirely to the secondary

instability mechanism. Fig. 19 further compares the results of SIT and DNS with regard to T,,.

Theory and simulation can be considered in qualitative agreement to about period 18. Beyond that,

there is gradual broadening of the stress peak in the DNS results, due presumably to nonlinear effects.

In Fig. 20 we make use of the Gaster transformation 1301, based on the phase speed c=Rc(o1l)/t

of the primary wave, to convert the temporal evolution of T,., to an approximate spatial distribution.

For clarity in Fig. 20, intervals between tick marks along the streamwise x axis are 10 displacement

thicknesses in length whereas intervals in the radial direction each denote a single displacement thick-

ness. Moreover, it should be noted that the contour intervals are different for Reynolds stress levels

below and above 0.04xl0. It is interesting to view Figs. 19 and 20 in light of the high-speed experi-

ment of Fischer and Weinstein [151, in which transition is observed to originate near the critical layer

and to propagate inwardly to the body. These ligures suggest a similar evolution to transition and a

possible link between secondary instability theory and observed phenomena.
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The initial and final times of the temporal simulation correspond via the Gaster transformation

1301 to approximate initial and final streamwise stations of x =10R and x 19R respectively. Over

this spatial extent, the boundary layer would have thickened by about 35c%, a change of length scale

large enough to significandy alter the growth of the primary disturbance according to Fig. 5. It appears

that modeling the growth of the boundary-layer is a necessity if direct simulation of high-speed transi-

tion is to be quantitatively valid. Within the context of temporal DNS, this can be approximated

through time evolution of the mean flow. Alternately, one must resort to more computationally-

intensive spatial DNS.

Fluid Rotation

It has been suggested by Morkovin [341, that the "angular momenta" vector pol is more physically

meaningful for compressible flows than is the vorticity vector 63=Vxa'. This can be inferred as well

from the presence of density in the generalized inflection point condition (10). In Figs. 21 we compare

contours of azimuthal vorticity wo = L* ( au - -hx) with contours of azimuthal angular momentum

pcog at period 37.7 of the numerical simulation. The contour patterns arc quite different, due in part to

the decreased mean density at the wall. Particularly in Fig. 21b, it is clear that a highly rotational layer

has formed at the critical layer, with rotational peaks at intervals of the subhannonic wavelength 4r/!x.

8. CONCLUSIONS

Because of the computational expense of direct numerical simulation, our work to date has been

restricted to very few parameter sets and is very much "in progress". Accordingly, these comments

should perhaps be interpreted as "observations" rather than as "conclusions".

1) Secondary instability of subharmonic type exists in high-speed boundary-layer flows over flat

plates and cylinders, and is a likely path to transition. However, due to a general stabilizing trend

with increasing M, secondary instabilities at high-speeds are not as "explosive" as their counter-
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parts in incompressible flow. The regions of linear and nonlinear growth are relatively long, and

the boundary layer may experience significant growth during laminar-turbulent transition. Growth

of the boundary layer needs to be modeled if the results of direct numerical simulation are to be

quantitatively valid.

2) For primary and secondary instability mechanisms, the temperature and density components of the

eigenfunctions dominate at high-speeds. For example, at Mach 4.5, axisymmetric second-mode

disturbances exhibit peak temperature-fluctuation amplitudes which are 15 times that of stream-

wise velocity fluctuations.

3) For primary and secondary instabilities, the peak amplitudes of the temperature fluctuations occur

at or very near the critical layer. Thus, the critical layer plays an important role in the instability

mechanisms which arise in high-speed, wall-bounded flows.

4) The principal effect of transverse curvature on primary and secondary instability mechanisms

seems to be quantitative rather than qualitative. In general, axisymmetric primary instability

modes are stabilized by moderate curvature, which in turn should delay the onset of secondary

instability. Curvature effects tend to become more significant with decreasing Reynolds number

and increasing Mach number.

5) The amplitude of the eigenfunction of a secondary disturbance, with little structure at the wall;

the relative insensitivity of secondary disturbances to changes in the mean flow; the relatively

large growth rates of secondary instabilities; and the persistence of the secondary instability

mechanism as ReL. -*0, all suggest that the secondary instability mechanism is predominantly

inviscid.

6) In high-speed boundary-layer flow, secondary instability is responsible for large Reynolds stresses

near the critical layer, and offers a possible explanation for the phenomenon observed experimen-

tally by Fischer and Weinstein 1151. Moreover, insight gained from secondary instability theory

may provide a means to refine transition models based on Reynolds stresses.
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7) Secondary instability theory offers a possible means of refining the eN method for transition pred-

iction, based on a primary disturbance amplitude criterion rather than on an amplitude-ratio cri-

terion.

We conclude by reiterating that there is great need for carefully-conducted compressible stability

experiments, well-coordinated with analyses and direct numerical simulation.
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1) Cylindrical coordinate system.

Mean Flow Profiles in the Boundary Layer along a Cylinder
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2) Streamwise evolution of mean streamwise velocity and mean temperature in the boundary layer of
a cylinder.
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Growth of Displacement Thickness with Mach No.
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3) Growth with increasing Mach number of relative boundary-layer displacement thickness 8 IL on
a flat plate.
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4) Variation of relative displacement thickness * IL * with curvature C at Mach 4.5 (wind tunne'
conditions).
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5) Neutral-stability curves for first and second-mode disturbances at Mach 4.5, with rays of constant

dimesionl waenumer.a~; __a; _ _ a (adapted from L. Mack (31],
with permission.)
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Helical First Mode Eigenfunction
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6) Eigenfunction components of a) a helical first-mode disturbance, and b) an axisymmetric second-
mode disturbance at Mach 4.5.
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Axisymmetric and Helical Instability Modes
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7) Influence of moderate transverse curvature on axisymmetric first and second-mode disturbances at
Mach 4.5.
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Temporal Growth Rate vs. Transverse Curvature
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8) Influence of increasing transverse curvature C on second-mode disturbances at Mach 4.5, for

wavenumbers: a) c=0.20; and b) o-0.22
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Secondary Instability
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9) Growth rates of a secondary disturbances of fundamental and subharmonic types as a functions of

primary disturbance amplitude at Mach 1.6.
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10) Influence of detuning parameter h on secondary disturbance growth rate at Mach 4.5.
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11) Growth rate of a subharmonic secondary disturbance as a function of primary disturbance ampli-
tude at Mach 4.5.
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12) Influence of increasing transverse curvature C on vabharmonic secondary instability at Mach 4.5.
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Subhormonic Secondary Eigenfunction
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13) Eigenfunction components of a subbarmonic-type secondary disturbance at Mach 4.5.
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14) Influence of increasing Reynolds number on a subbarmonic secondary instability mechanism at
Mach 4.5.
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Temporal Growth of Selected Harmonics
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15) Temporal growth of the energy content of selected harmonics: .---- direct simulation, primary; -
- - direct simulation, secondary; a theory, primary; 0 theory, secondary; A theory modified
according to eqs. (20); 0 growth at the rate Im(r 1 ,.
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16) Evolution of the temperature component of the fundamental (1,0) mode.
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Temporal Evolution of Mode (1/2,1)
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17) Evolution of the temperature component of the (1/2.1) harmonic Mode.
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Averaged Reynolds Stresses
(Six Period Intervals)
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18) Radial distribution of spatially-averaged Reynolds stresses at selected time intervals.
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Averaged Reynolds Stresses
(Six Period Intervals)
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19) Comparison between direct numerical simulation and secondary instability theory for the T,,,
Reynolds stress.
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Reynoldls Stress, tau13 x I0**4
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20) Approximate spatial evolution of the r,,, Reynolds stress based on Gaster's transformation: a)
secondary instability theory; b) direct numerical simulation.
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21) Comparison of a) iso-vorticity contours and b) contours of constant angular momentum in the 0
x -z plane.
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